Excitation functions of proton induced reactions on $^{nat}{\rm Sn}$: relevance to the production of $^{111}{\rm In}$ and $^{114m}{\rm In}$ for medical applications

F. Tárkányi 1, F. Ditrói 1, I. Mahunka 1, M. S. Uddin 2, M. Hagiwara 2, M. Baba 2, Yu. Shubin 3, A. I. Dityuk 3

The 111 In is used both for diagnostic and therapeutic purposes. The 114mIn is a therapeutic radioisotope. The production possibility of the medically used 111 In and 114m In were investigated via proton irradiation of tin targets by determining the excitation functions, production yields and the impurity levels. According to our knowledge no earlier results are available in this energy range in the literature. The aim of investigation of this route was to avoid difficulties with commonly used, expensive, highly enriched targets (111 Cd, 112 Cd, 113 Cd, 114 Cd). The excitation functions for production of 111mg,114m,117m In radioisotopes were measured from 30 up to 70 MeV by using activation method, stacked foil irradiation technique and direct HpGe gamma counting of irradiated samples. The irradiations were done at an external beam line of Tohoku University cyclotron. The beam intensity and the energy degradation were controlled in the whole energy range by simultaneously measured nat Al(p,x) 22,24 Na and nat Cu(p,x) 56,58 Co, 62,65 Zn monitor reactions. Theoretical excitation functions for nat Cd(p,x) 111,114,117 In reactions have been calculated using the well developed Alice-IPPE code. The measured experimental results were compared with the yields obtained earlier for other high energy alternative production routes (by using Cd and In targets with natural isotopic composition or by using highly enriched Cd targets).

According to our results to production of high purity 111 In for diagnostic purposes is possible only through the decay of 111 Sn via chemical separation of the directly produced indium radioisotopes after EOB. For therapy only a mixture of 111 In and 114m In radioisotopes can be produced effectively by proton induced nuclear reactions on natural tin target.

Email: tarkanyi@atomki.hu

¹ Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary

² Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan

³ Institute of Physics and Power Engineering, Obninsk, Russian Federation